Chemical Approaches to Nanoscience

Organic synthesis enables the precise generation of functional molecular building blocks and constitutes the basis of chemical approaches that our group is developing to address current challenges in materials science.

Check out our group research either as a poster (Fall 2013) or summary (Fall 2011) in German (only).

Read the Angewandte Chemie author profile about SH (Summer 2011) in either English or German.

Read short interview in Adlershofer Kluge Köpfe / Adlershof Great Minds in English & German.


In this video clip, Stefan Hecht uses a historical setting to motivate his research on photoswitchable molecules that act as optically addressable gates in future transistor and other devices.
In this video clip, Stefan Hecht describes the creative process of developing a chemical concept, translating it into a molecular target structure, and realizing its synthesis.
In this video clip, Stefan Hecht motivates his group’s research in smart light-responsive materials and explains in simple terms the underlaying principle of photoswitchable molecules.
In diesem Interview motiviert Stefan Hecht seine Forschung in den Nanowissenschaften und erklärt die zugrundeliegende Philosophie und interdisziplinären Charakter.

What We Do


Our main efforts are directed towards:
  • Remote-controlling function: Developing photoresponsive (switchable and triggerable) reactive and catalytically active systems as well as charge-transporters for spatially and temporally resolved chemistry, signal amplification, and smart materials.
  • Optomechanics: Designing various light-driven macromolecular systems (foldamers and rigid rods) that exploit cooperative phenomena (either folding and aggregation, respectively) to directly and efficiently convert light into motion.
  • Surface-confined chemistry: Controlling conformation, self-assembly, and chemical reactivity (switching and covalent bond formation) of individual molecules and their assemblies on solid substrates for nanoconstruction, molecular-scale electronics, and sensing.
A poster summarizing our research activities is provided here. For more information see our research highlight section and read our publications.


Being first
Two Humboldt Fellowships
Optically switchable transistors
Molecular zippers based on polyazobenzenes
How to switch with visible light
Making photoswitches robust
Welcome Niels!
Following diarylethene photochromism on surfaces
New project "iSwitch" started
Smart release platform developed
Watching single molecule rods bend by light
Welcome Sebastian, Wenjie, Christopher and Petr
Robert successfully defended his dissertation
In-depth study of fluorinated azobenzenes
Deciphering photodegradation of organic emitters
show all news


  • molecular design & organic synthesis
  • macromolecular & supramolecular chemistry and photochemistry & (spectro)electrochemistry
  • molecular switches & devices and remote-controlled chemistry & surface confinement
  • nanoscience & material science